лЧЬСЕ ЗЮЕДЕКСГ

юЛИЫО-ВЙМЕНКВГ ЯВНВХОЕНСЗОСХВ ОСНСЗОЛНВ

пЕКЛЙЕКЛИЛФСАЕЗХЛЕ ЛМСЗВКСЕ ювя ДСКСЗОЛНВ

жЛККВГ ДСВФНВЙЙВ С ОЛХС ДСЛДКЛФЛ ОСНСЗОЛНВ Ю ЛОХНЭОЛЙ ЗЛЗОЛГКСС

жВЮСЗСЙЛЗОЫ ХЛШППСТСЕКОВ МЕНЕДВАС a ЛО ОЛХВ ШЙСООЕНВ

жВЮСЗСЙЛЗОЫ ХЛШППСТСЕКОВ й ЛО КВМНГРЕКСГ VG. ъЙКЛРЕКСЕ Ю ХЛИИЕХОЛНКЛЙ МЕНЕЯЛДЕ

оНСКСЗОЛН.  пЕКЛЙЕКЛИЛФСАЕЗХЛЕ ЛМСЗВКСЕ ювя

Тринистор

Как уже говорилось, чтобы перевести тиристор в открытое состояние, необходимо накопить избыточный отрицательный заряд в базе n1 и положительный в базе р2. Это осуществляется путем увеличения уровня инжекции через эмиттерные переходы П1 и П3 при увеличении напряжения на тиристоре до Uперекл. Накоплением объемных зарядов в базах Б1 и Б2 можно управлять, если у одной из баз имеется контакт, который называется управляющим электродом (см. рис. 1б).
На управляющий электрод базы подается напряжение такой полярности, чтобы прилегающий к этой базе эмиттерный переход был включен в прямом направлении. Это приводит к росту тока через эмиттерный переход и сниже-нию Uперекл. На рисунке 9 приведено семейство ВАХ тиристора при различных значениях управляющего тока.
При достаточно больших значениях тока Iупр ВАХ тиристора вырождается в прямую ветвь ВАХ диода. Критическое значение тока Iупр, при котором на ВАХ тиристора исчезает участок с отрицательным диффиренциальным сопротивлением и тринистор включается, минуя запертое состояние, называется током спрямления.
Таким образом, наличие Iупр принципиально не меняет существа процессов, определяющих вид ВАХ тиристора, но меняет значения параметров: напряжение переключения и ток переключения.

Рис. 9. ВАХ тринистора при различных значениях управляющего тока базы Iупр


На рисунке 10 приведены параметры, характеризующие различного сорта тиристоры в зависимости от выбора рабочей точки. Наиболее важные параметры - это время включения и выключения тиристора и управляющий ток.

Рис. 10. Примеры характеристик кремниевых тринисторов КУ104

Феноменологическое описание ВАХ тринистора

Аналогично как для динистора, запишем систему уравнений для тока тиристора через эмиттерный и коллекторный p-n переходы, с учетом управляющего тока Iу через вторую базу

(7)

Сумма всех токов, протекающих через переход П3, будет равна:

(8)

На рисунке 11 приведена схема тринистора, используемая для расчета вольт- амперных характеристик в закрытом состоянии.

Рис. 11. Схема включения тринистора для расчета ВАХ

Сохраняя обозначение тока тиристора, как и ранее, через знак , запишем:

(9)

При наличии лавинного умножения М в коллекторе П3 ток через коллекторный переход будет равен:

(10)

Отсюда ВАХ тиристора на закрытом участке равна:

(11)

Уравнение (11) описывает ВАХ тиристора в закрытом состоянии, по-скольку коэффициенты М, а1 и а2 зависят от напряжения Vg.
Аналогично динистору, в открытом состоянии тиристор находится до тех пор, пока за счет проходящего тока поддерживаются избыточные заряды в базах, необходимые для понижения высоты потенциального барьера коллекторного перехода до величины, соответствующей прямому его включению.
Если же ток уменьшить до критического значения Iу, то в результате рекомбинации и рассасывания избыточные заряды в базах уменьшатся, р-n переход коллектора окажется включенным в обратном направлении, произойдет перераспределение падений напряжений на р-n переходах, уменьшатся инжекции из эмиттеров и тиристор перейдет в закрытое состояние.