Решение систем линейных уравнений

Метод обратной матрицы: для системы из n уравнений с n неизвестными , при условии что определитель матрицы не равен нулю, единственное решение можно представить в виде . Для того чтобы решить систему линейных уравнений методом обратной матрицы, необходимо выполнить следующие действия:

  • сформировать матрицу коэффициентов и вектор свободных членов заданной системы;
  • решить систему, представив вектор неизвестных как произведение матрицы, обратной к матрице системы, и вектора свободных членов.

Пример:

Дана система уравнений:

Решаем на MATLAB:

A=[1 -2 1; 2 -5 -1; -7 0 1];

b=[2; -1; -2];

x=inv(A)*b % Решение системы x=A-1b

Результатом будет:

x =

0.5200

0.0800

1.6400

Решение системы линейных уравнений при помощи метода Гаусса основывается на том, что от заданной системы, переходят к системе эквивалентной, которая решается проще, чем исходная.

Метод Гаусса состоит из двух этапов:

  • Первый этап - это прямой ход, в результате которого расширенная матрица системы путем элементарных преобразований (перестановка уравнений системы, умножение уравнений на число, отличное от нуля, и сложение уравнений) приводится к ступенчатому виду.
  • На втором этапе (обратный ход) ступенчатую матрицу преобразуют так, бы в первых n столбцах получилась единичная матрица. Последний, n +1 столбец этой матрицы содержит решение системы линейных уравнений.

Порядок решения задачи в MATLAB следующий:

  • сформировать матрицу коэффициентов и вектор свободных членов заданной системы;
  • сформировать расширенную матрицу системы, объединив и ;
  • используя функцию rref, привести расширенную матрицу к ступенчатому виду;
  • найти решение системы, выделив последний столбец матрицы, полученной в предыдущем пункте;
  • выполнить вычисление ; если в результате получился нулевой вектор, задача решена верно.

Пример:

A=[1 -2 1; 2 -5 -1; -7 0 1];

b=[2; -1; -2];

C=rref([A b]); %Приведение расширенной матрицы к треугольному виду

x=C(1:3,4:4)%Выделение последнего столбца из матрицы

Результатом будет:

x =

0.5200

0.0800

1.6400

Примеры:

obr_matix.m

Gauss.m

 

<<Назад

Далее >>