Вычисление каждого (или интересующего нас) корня уравнения с требуемой точностью. Уточнение происходит с помощью методов, изложенных ниже.
Метод дихотомии (бисекций)
Иначе называется методом половинного деления. Пусть задан начальный интервал [x0, x1], на котором f(x0)f(x1) ≤ 0 (т.е. внутри имеется не менее чем один корень). Найдем x2 = ½ (x0 + x1) и вычислим f(x2). Если f(x0)f(x2) ≤ 0, используем для дальнейшего деления отрезок [x0, x2], если > 0 – используем для дальнейшего деления отрезок [x1, x2], и продолжаем деление пополам.
Итерации продолжаются, пока длина отрезка не станет меньше 2ξ – заданной точности. Тогда середина последнего отрезка даст значение корня с требуемой точностью. В качестве иного критерия можно взять
| f(x)| ≤ ξy.
Скорость сходимости метода невелика, однако он прост и надежен. Метод неприменим к корням четной кратности. Если на отрезке несколько корней, то заранее неизвестно, к какому из них сойдется процесс.
Если на заданном интервале предполагается несколько корней, то существует возможность последовательно исключать найденные корни из рассмотрения. Для этого воспользуемся вспомогательной функцией , где – только что найденный корень. Для функций f(x) и g(x) совпадают все корни, за исключением (в этой точке полюс функции g(x)). Для достижения требуемой точности рекомендуется грубо приблизиться к корню по функции g(x), а затем уточнить его, используя f(x).
Метод хорд
Идея метода проиллюстрирована рисунком. Задается интервал [ x0, x1], на котором f(x0)f(x1) ≤ 0, между точками x0 и x1 строится хорда, стягивающая f(x). Очередное приближение берется в точке x2, где хорда пересекает ось абсцисс. В качестве нового интервала для продолжения итерационного процесса выбирается тот, на концах которого функция имеет разные знаки. Условия выхода из итерационного цикла: или | f(x)| ≤ ξy.
Для вывода итерационной формулы процесса найдем точку пересечения хорды (описываемой уравнением прямой) с осью абсцисс: ax2 + b = 0, где ; b = f(x0) - ax0.
Отсюда легко выразить .
Метод хорд в большинстве случаев работает быстрее, чем метод дихотомии. Недостатки метода те же, что и в предыдущем случае.
Метод Ньютона (касательных.
Пусть x0 – начальное приближение к корню, а f(x) имеет непрерывную производную. Следующее приближение к корню найдем в точке x1, где касательная к функции f(x), проведенная из точки (x0, f0), пересекает ось абсцисс. Затем точно так же обрабатываем точку(x1, f1), организуя итерационный процесс. Выход из итерационного процесса по условию .
Уравнение касательной, проведенной из точки (x0, f0): y(x) = f /(x0)(x-x0) + f(x0) дает для y(x1) = 0 следующее выражение:
, (1)
которое и используется для организации итерационного процесса. Итерации сходятся, только если всюду выполняется условие ; в противном случае сходимость будет не при любом начальном приближении, а только в некоторой окрестности корня. Итерации будут сходиться к корню с той стороны, с которой .
Метод обладает самой высокой скоростью сходимости: погрешность очередного приближения примерно равна квадрату погрешности предыдущего приближения. Метод можно использовать для уточнения корней в области комплексных чисел, что необходимо при решении многих прикладных задач, например при численном моделировании электромагнитных колебательных и волновых процессов с учетом временной и пространственной диссипации энергии.
Недостатком метода можно указать необходимость знать явный вид первой и второй производных, так как их численный расчет приведет к уменьшению скорости сходимости метода. Иногда, ради упрощения расчетов, используют т.н. модифицированный метод Ньютона, в котором значениеf /(x) вычисляется только в точке x0, при этом число итераций увеличивается, но расчеты на каждой итерации упрощаются.
Метод секущих
В отличие от метода Ньютона, можно заменить производную первой разделенной разностью, найденной по двум последним итерациям, т.е. заменить касательную секущей. При этом первый шаг итерационного процесса запишется так:
.
Для начала итерационного процесса необходимо задать x0 и x1, которые не обязательно ограничивают интервал, на котором функция должна менять знак; это могут быть любые две точки на кривой. Выход из итерационного процесса по условию .
Сходимость может быть немонотонной даже вблизи корня. При этом вблизи корня может происходить потеря точности, т.н. «разболтка решения», особенно значительная в случае кратных корней. От разболтки страхуются приемом Гарвика: выбирают некоторое ξx и ведут итерации до выполнения условия . Затем продолжают расчет, пока убывает. Первое же возрастание может свидетельствовать о начале разболтки, а значит, расчет следует прекратить, а последнюю итерацию не использовать.
Метод простых итераций.
Суть метода простых итераций в принципе совпадает с методом, изложенным для решения систем линейных алгебраических уравнений. Для нелинейного уравнения метод основан на переходе от уравнения
f(x) = 0 (2)
К эквивалентному уравнению x = φ(x). Этот переход можно осуществить разными способами, в зависимости от вида f(x). Например, можно положить
φ(x) = x + bf(x), (3)
где b = const, при этом корни исходного уравнения (2) не изменятся.
Если известно начальное приближение к корню x0, то новое приближение x1 = φx(0), т.е. общая схема итерационного процесса:
xk+1 = φ(xk). (4)
Наиболее простой критерий окончания процесса .
Критерий сходимости метода простых итераций: если вблизи корня |φ /(x)| < 1, то итерации сходятся. Если указанное условие справедливо для любого x, то итерации сходятся при любом начальном приближении. Исследуем выбор константы b в функции (3) с точки зрения обеспечения максимальной скорости сходимости. В соответствии с критерием сходимости наибольшая скорость сходимости обеспечивается при |φ /(x)| = 0. При этом, исходя из (3), b = –1/f /(x), и итерационная формула (4) переходит в
,
т.е. в формулу метода Ньютона (1). Таким образом, метод Ньютона является частным случаем метода простых итераций, обеспечивающим самую высокую скорость сходимости из всех возможных вариантов выбора функции φ(x).
<<Назад
Далее >>