# ГОСТЫ И УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

При использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров используются системы условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивно-технологическим свойствам, виду полупроводниковых материалов.

Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах.

Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в следующих ГОСТах:

- **25529-82** Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров;
- **19095-73** Транзисторы полевые. Термины, определения и буквенные обозначения параметров;
- **20003-74** Транзисторы биполярные. Термины, определения и буквенные обозначения параметров;
- **20332-84** Тиристоры. Термины, определения и буквенные обозначения параметров.

## Условные обозначения и классификация отечественных полупроводниковых приборов.

Система обозначений современных полупроводниковых диодов, тиристоров и оптоэлектронных приборов установлена отраслевым стандартом ОСТ 11 336.919-81 и базируется на ряде классификационных признаков этих приборов. В основу системы обозначений положен буквенно-цифровой код, который состоит из 5 элементов.

#### Первый элемент

- (буква или цифра) обозначает исходный полупроводниковый материал, на базе которого создан полупроводниковый прибор. Для приборов общегражданского применения используются буквы, являющиеся начальными буквами в названии полупроводника или полупроводникового соединения. Для приборов специального применения вместо этих букв используются цифры.

| Исходный материал Ус                 | словные обозначения |
|--------------------------------------|---------------------|
| Германий или его соединения          | Гили 1              |
| Кремний или его соединения           | К или 2             |
| Соединения галлия (например, арсенид | галлия) А или 3     |
| Соединения индия (например, фосфид в | индия) И или 4      |

## **Второй элемент**- подкласс полупроводниковых приборов. Обычно буква выбирается из названия прибора, как первая буква названия

| Подкласс<br>приборов                                  | Условные<br>обозначения | Подкласс<br>приборов  | Условные<br>обозначения |
|-------------------------------------------------------|-------------------------|-----------------------|-------------------------|
| Выпрямительные,<br>универсальные,<br>импульсные диоды | Д                       | Стабилитроны          | С                       |
| Транзисторы                                           | Т                       | Выпрямительные столбы | Ц                       |
| биполярные                                            |                         |                       |                         |
| Транзисторы полевые                                   | П                       | Диоды Ганна           | Б                       |
| Варикапы                                              | В                       | Стабилизаторы тока    | К                       |
| Тиристоры диодные                                     | Н                       | Сверхвысокочастотные  | Α                       |
|                                                       | 11                      | диоды                 | / \                     |
| Тиристоры триодные                                    | У                       | Излучающие ОЭ         | л Т                     |
|                                                       |                         | приборы               |                         |
| Туннельные диоды                                      | И                       | Оптопары              | 0                       |

#### Третий элемент

- (цифра) в обозначении полупроводниковых приборов, определяет основные функциональные возможности прибора. У различных подклассов приборов наиболее характерные эксплуатационные параметры (функциональные возможности) различны. Для транзисторов — это рабочая частота и рассеиваемая мощность, для выпрямительных диодов - максимальное значение прямого тока, для стабилитронов — напряжение стабилизации и рассеиваемая мощность, для тиристоров — значение тока в открытом состоянии.

| Назначение прибора                               | Условные<br>обозначения |      | Назначение прибора                                           | Условные<br>обозначения |    |  |
|--------------------------------------------------|-------------------------|------|--------------------------------------------------------------|-------------------------|----|--|
| Диоды выпрямительные, с прямым                   | 1 током                 | , A: | Выпрямительные столбы с прямым током, А:                     |                         |    |  |
| менее 0,3                                        |                         | 1    | менее 0,3                                                    | 1                       |    |  |
| 0,310                                            |                         | 2    | 0,3 10                                                       | 2                       |    |  |
| Диоды прочие (магнитодиоды, термодиоды и др.)    |                         | 3    | Выпрямительные блоки с пря                                   | мым током,              | A: |  |
| Диоды импульсные, с временем восстановления, нс: |                         |      | менее 0,3                                                    |                         | 3  |  |
| более 500                                        |                         | 4    | 0,310                                                        |                         | 4  |  |
| 150500                                           |                         | 5    | Транзисторы биполярные:                                      |                         |    |  |
| 30150                                            |                         | 6    | маломощные с рассеиваемой мощностью P <sub>v</sub> <0,3 Вт:  |                         |    |  |
| 530                                              |                         | 7    | низкой частоты<br>(граничная частота F <sub>гр</sub> <3 МГц) |                         | 1  |  |
| 15                                               |                         | 8    | средней частоты (F <sub>гр</sub> =330 МІ                     | Гц)                     | 2  |  |
| с эффективным временем жизни                     |                         |      |                                                              |                         |    |  |
| неосновных носителей заряда мене                 | нее 1 9                 |      | высокой и сверхвысокой част                                  | ОТ                      | 3  |  |
| НС                                               |                         |      |                                                              |                         |    |  |
| Триодные тиристоры с максимальн                  | 0                       |      |                                                              |                         |    |  |
| допустимым средним током в открытом              |                         |      | средней мощности (P <sub>x</sub> =0,31,5 Вт):                |                         |    |  |
| состоянии (или импульсным), А:                   |                         |      |                                                              |                         |    |  |

| незапираемые:        |   | низкой частоты                                | 4 |  |
|----------------------|---|-----------------------------------------------|---|--|
| менее 0,3 (менее 15) | 1 | средней частоты 5                             |   |  |
| 0,310 (15100)        | 2 | высокой и сверхвысокой частот                 | 6 |  |
| более 10 (более 100) | 7 | большой мощности (P <sub>x</sub> >1,5 Вт):    |   |  |
| запираемые:          | • | низкой частоты                                | 7 |  |
| менее 0,3 (менее 15) | 3 | средней частоты                               | 8 |  |
| 0,310 (15100)        | 4 | высокой и сверхвысокой частот                 | 9 |  |
| более 10 (более 100) | 6 | Транзисторы полевые:                          |   |  |
| симметричные:        | · | малой мощности (P <sub>x</sub> <0,3 Вт):      |   |  |
| менее 0,3 (менее 15) | 5 | низкой частоты 1                              |   |  |
| 0,3 10 (15 100)      | 6 | средней частоты 2                             |   |  |
| более 10 (более 100) | 9 | высокой и сверхвысокой частот                 | 3 |  |
| Туннельные диоды:    |   | средней мощности (P <sub>x</sub> =0,31,5 Вт): |   |  |
| обращенные           | 1 | низкой частоты                                | 4 |  |
| генераторные         | 2 | средней частоты 5                             |   |  |
| усилительные         | 3 | высокой и сверхвысокой частот 6               |   |  |
| переключательные     | 4 | большой мощности (P <sub>x</sub> >1,5 Вт):    |   |  |
| Генераторы шума:     |   | низкой частоты                                | 7 |  |

| Низкочастотные                                                          | 1 | средней частоты                               | 8 |  |
|-------------------------------------------------------------------------|---|-----------------------------------------------|---|--|
| высокочастотные                                                         | 2 | высокой и сверхвысокой частот 9               |   |  |
| Варикапы:                                                               | • | Источники инфракрасного излучения:            |   |  |
| подстрочные                                                             | 1 | излучающие диоды                              | 1 |  |
| умножительные (варакторы)                                               | 2 | излучающие модули 2                           |   |  |
| Стабилитроны, стабисторы и ограничители, с напряжением стабилизации, В: |   | Приборы визуального представления информации: |   |  |
| мощностью менее 0,3 Вт:                                                 |   | светоизлучающие диоды 3                       |   |  |
| менее 10                                                                | 1 | знаковые индикаторы 4                         |   |  |
| 10100                                                                   | 2 | знаковые табло 5                              |   |  |
| более 100                                                               | 3 | шкалы 6                                       |   |  |
| мощностью 0,35 Вт:                                                      |   | экраны 7                                      |   |  |
| менее 10                                                                | 4 | Оптопары:                                     |   |  |
| 10100                                                                   | 5 | резисторные                                   | Р |  |
| более 100                                                               | 6 | диодные                                       | Д |  |
| мощностью 510 Вт                                                        |   | тиристорные                                   | У |  |
| менее 10                                                                | 7 | транзисторные                                 | Т |  |
| 10100                                                                   | 8 |                                               |   |  |
| более 100                                                               | 9 |                                               |   |  |

**Четвертый элемент** - (2 либо 3 цифры) означает порядковый номер технологической разработки и изменяется от 01 до 999.

Пятый элемент - (буква) в буквенно-цифровом коде системы условных обозначений указывает разбраковку по отдельным параметрам приборов, изготовленных в единой технологии. Для обозначения используются заглавные буквы русского алфавита от А до Я, кроме 3, О, Ч, Ы, Ш, Щ, Я, схожих по написанию с цифрами.

# Условные обозначения и классификация зарубежных полупроводниковых приборов

В Европе используется система, по которой обозначения полупроводниковым приборам присваиваются организацией Association International **Pro Electron.** 

По этой системе приборы для бытовой аппаратуры широкого применения обозначаются двумя буквами и тремя цифрами. Так, у приборов широкого применения после двух букв стоит трехзначный порядковый номер от 100 до 999. У приборов, применяемых в промышленной и специальной аппаратуре, третий знак — буква (буквы используются в обратном алфавитном порядке: Z, Y, X и т.д.), за которой следует порядковый номер от 10 до 99.

# В системе Pro Electron приняты следующие условные обозначения:

#### Первый элемент

- (буква) обозначает исходный полупроводниковый материал, на базе которого создан полупроводниковый прибор. Используются 4 латинские буквы A, B, C и D, в соответствии с видом полупроводника или полупроводникового соединения.

| Исходный материал | Ширина запрещенной зоны, эВ | Условные<br>обозначения |
|-------------------|-----------------------------|-------------------------|
| Германий          | 0,61                        | Α                       |
| Кремний           | 11,3                        | В                       |
| Арсенид галлия    | более 1,3                   | С                       |
| Антимонид индия   | менее 1,6                   | D                       |

## Второй элемент - (буква) обозначает подкласс полупроводниковых приборов.

| Полиласс приборов                                             | Условные    |  |  |
|---------------------------------------------------------------|-------------|--|--|
| Подкласс приборов                                             | обозначения |  |  |
| Диоды детекторные, быстродействующие,                         | A           |  |  |
| смесительные                                                  |             |  |  |
| Диоды с переменной емкостью                                   | В           |  |  |
| Транзисторы низкочастотные маломощные                         | С           |  |  |
| (R <sub>thja</sub> >15 ºC/Вт)                                 |             |  |  |
| Транзисторы низкочастотные мощные                             | D           |  |  |
| (R <sub>thja</sub> <15 ºC/Вт)                                 |             |  |  |
| Диоды туннельные                                              | Е           |  |  |
| Транзисторы высокочастотные маломощные (R <sub>thja</sub> >15 | F           |  |  |
| <u>°</u> С/Вт)                                                | '           |  |  |
| Транзисторы высокочастотнае мощные                            | 1           |  |  |
| (R <sub>thia</sub> <15 ºC/Вт)                                 | L           |  |  |
| Светочувствительные (фотоприемные) приборы                    | Р           |  |  |
| (фотодиоды, фототранзисторы и др.)                            | P           |  |  |
| Излучающие приборы                                            | Q           |  |  |
| Приборы, работающие в области пробоя                          | R           |  |  |
| Транзисторы переключающие мощные                              | S           |  |  |

| Регулирующие и переключающие приборы, мощные управляемые выпрямители (R <sub>thja</sub> <15 ºC/Вт) | T |
|----------------------------------------------------------------------------------------------------|---|
| Транзисторы<br>переключающие мощные                                                                | U |
| Диоды умножительные                                                                                | Χ |
| Диоды выпрямительные<br>мощные                                                                     | Υ |
| Стабилитроны                                                                                       | Z |

**Третий элемент** - (цифра или буква) обозначает в буквенноцифровом коде полупроводниковые приборы, предназначенные для аппаратуры общегражданского применения (цифра) или для аппаратуры специального применения (буква). В качестве буквы в последнем случае используются заглавные латинские буквы, расходуемые в обратном порядке Z, Y, X и т.п.

**Четвертый элемент** - (2 цифры) означает порядковый номер технологической разработки и изменяется от 01 до 99.

Например, BTX10-200 - это кремниевый управляемый выпрямитель (тиристор) специального назначения с регистрационным номером 10 и напряжением 200 В.

#### Стандарт JIS-C-7012

Система стандартных обозначений, разработанная в Японии (стандарт JIS-C-7012, принятый ассоциацией EIAJ-Electronic Industries Association of Japan) позволяет определить класс полупроводникового прибора (диод или транзистор), его назначение, тип проводимости полупроводника. Вид полупроводникового материала в японской системе не отражается.

Условное обозначение полупроводниковых приборов по стандарту JIS-C-7012 состоит из пяти элементов.

**Первый элемент** - (цифра) обозначает тип полупроводникового прибора. Используются 3 цифры (0, 1, 2 и 3) в соответствии с типом прибора.

| Класс приборов             | Условные<br>обозначения |
|----------------------------|-------------------------|
| Фотодиоды, фототранзисторы | 0                       |
| Диоды                      | 1                       |
| Транзисторы                | 2                       |
| Четырехслойные приборы     | 3                       |

**Второй элемент** обозначается буквой S и указывает на то, что данный прибор является полупроводниковым. Буква S используется как начальная буква от слова Semiconductor.

# **Третий элемент -** (буква) обозначает подкласс полупроводниковых приборов. Ниже в таблице приведены буквы, используемые для обозначения подклассов:

| Подкласс приборов                 | Условные<br>обозначения | Подкласс приборов                          | Условные<br>обозначения |
|-----------------------------------|-------------------------|--------------------------------------------|-------------------------|
| Транзисторы p-n-p высокочастотные | А                       | Полевые транзисторы с п-каналом            | K                       |
| Транзисторы p-n-p низкочастотные  | В                       | Симметричные тиристоры                     | М                       |
| Транзисторы n-p-n высокочастотные | С                       | Светоизлучающие диоды                      | Q                       |
| Транзисторы n-p-n низкочастотные  | D                       | Выпрямительные диоды                       | R                       |
| Диоды Есаки                       | Е                       | Малосигнальные диоды                       | S                       |
| Тиристоры                         | F                       | Лавинные диоды                             | T                       |
| Диоды Ганна                       | G                       | Диоды с переменной емкостью, pin-<br>диоды | V                       |
| Однопереходные транзисторы        | Н                       | Стабилитроны                               | Z                       |
| Полевые транзисторы с р-каналом   | I                       |                                            |                         |

20

**Четвертый элемент** - обозначает регистрационный номер технологической разработки и начинается с числа 11.

Пятый элемент - отражает модификацию разработки (А и В — первая и вторая модификация).

#### **JEDEC (Joint Electron Device Engineering Council)**

Система обозначений JEDEC (Joint Electron Device Engineering Council), принята объединенным техническим советом по электронным приборам США. По этой системе приборы обозначаются индексом (кодом, маркировкой), в котором:

**Первый элемент** - (цифра) обозначает число *p-n* переходов. Используются 4 цифры (1, 2, 3 и 4) в соответствии с типом прибора:

- **1** диод
- 2 транзистор
- 3 тиристор
- 4 оптопара.

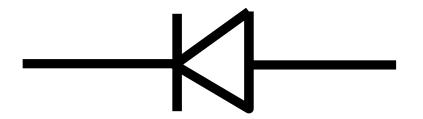
Второй элемент состоит из буквы N и серийного номера, который регистрируется ассоциацией предприятий электронной промышленности (EIA). Цифры серийного номера не определяют тип исходного материала, частотный диапазон, мощность рассеяния и область применения.

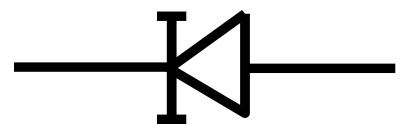
**Третий элемент** - одна или несколько букв, указывают на разбивку приборов одного типа на типономиналы по различным характеристикам.

Фирма-изготовитель, приборы которой по своим параметрам подобны приборам, зарегистрированным EIA, может представлять свои приборы с обозначением, принятым по системе JEDEC.

Пример: 2N2221A, 2N904.

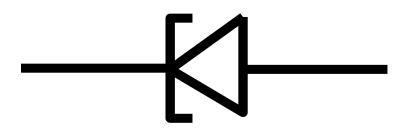
#### Биполярные транзисторы

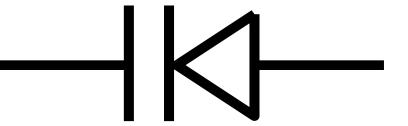

| Тभग गम् भर्छ ज्                          | Матер нал, стр уктур а,<br>технологин | P <sub>kmsy</sub> wBT | E <sub>rp</sub> , Fh216, Fh21, Mru | $U_{ m yd}$ orrow $U_{ m Po}$ raps, $U_{ m Po}$ oraps, ${f B}$ | Use erres B | Інпан Ікнтан МА | I <sub>kốo</sub> , I <sub>la 1</sub> , maA |
|------------------------------------------|---------------------------------------|-----------------------|------------------------------------|----------------------------------------------------------------|-------------|-----------------|--------------------------------------------|
| <b>КТ315И</b><br>(ОСТ 11.336.919-<br>81) | Si n-p-n                              | 150                   | ≥ 250                              | 60                                                             | б           | 50              | ≤ 0.6 (10 B)                               |
| 2N3904 (JEDEC)                           | Sĩ n-p-n                              | 310                   | 300                                | 60                                                             | 6           | 200             | ≤10 (60 B)                                 |
| BFX44<br>(Pro Electron)                  | Sĩ n-p-n                              | ПЭ 360                | ≥ 300                              | 40                                                             | 4           | 125<br>(250*)   | ≤0,1 (20 B)                                |
| <b>2SC57</b><br>(JIS-C-7012)             | Sĩ n-p-n                              | ПЭ 360                | ≥ 200                              | 40                                                             | 5           | 200             | ≤0,1 (15 B)                                |


#### Графические обозначения и стандарты

В технической документации и специальной литературе применяются условные графические обозначения полупроводниковых приборов в соответствии с ГОСТ 2.730-73 «Обозначения условные, графические в схемах. Приборы полупроводниковые». В таблице 13 приведены графические обозначения основных полупроводниковых приборов.

#### Диод выпрямительный

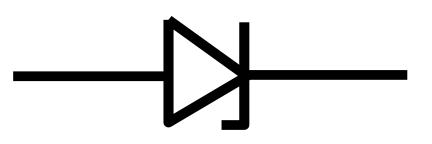

#### Диод туннельный





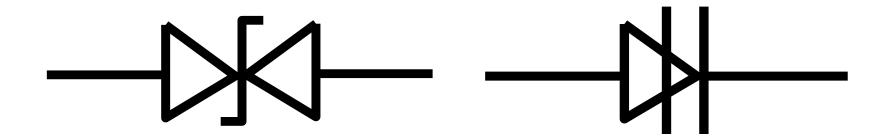

Диод обращения


Варикап



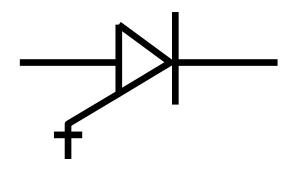



#### Диод светоизлучающий

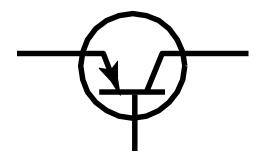

#### Односторонний стабилитрон

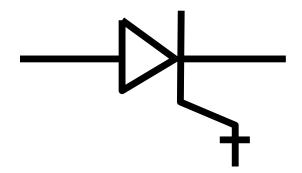




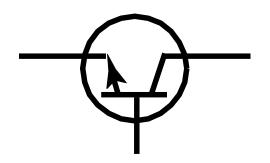

Двусторонний стабилитрон

Диодный тиристор

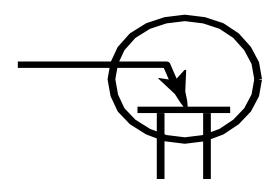




Триодный, запираемый в обратном направлении выключаемый, с управлением по каналу

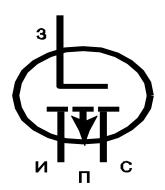
Триодный, запираемый в обратном направлении, выключаемый, с управлением по катоду



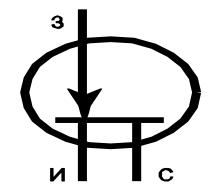

Транзистор типа p-n-p







Транзистор типа n-p-n




#### Однопереходный транзистор с n-базой



Полевой транзистор с изолированным затвором обогащенного типа с р-каналом



#### Полевой транзистор с каналом n-типа



Полевой транзистор с изолированным затвором обогащенного типа с n-каналом



### Спасибо за внимание!